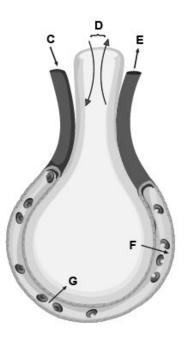

(2)

Q1.

(a) Figure 1 shows a diagram of the human gas exchange system.

Figure 1

Structure ${\bf B}$ is muscle. The volume of the thorax is increased when structure ${\bf B}$ contracts.


Nama	tho	structures	labelled	Λ	and R
Name	me	sinuciures	iabelled	А	and B

A .	
В	
-	

(b) **Figure 2** is a diagram of an alveolus and a blood vessel associated with the alveolus.

The direction of the movement of substances is shown by the arrows labelled ${\bf C},\,{\bf D},\,{\bf E},\,{\bf F}$ and ${\bf G}.$

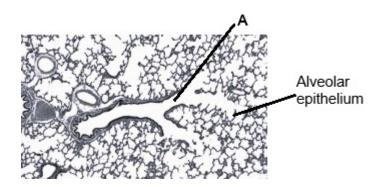
Figure 2

Complete the table below by writing the correct letter, \mathbf{C} , \mathbf{D} , \mathbf{E} , \mathbf{F} or \mathbf{G} , in the box next to each statement. You may use each letter once, more than once or not at all.

Box	Statement
	represents the diffusion of oxygen
	represents the transport of a gas mixture
	represents blood moving at the highest pressure

(2)

c)	Describe and explain one adaptation of a single alveolus for gas exchange.			


(2)

(Total 6 marks)

Q2.

-	
A scientist prepared all The scientist cut very	lveolar tissue to view using an optical microscope. thin slices of the alveolar tissue.
Explain why the scient optical microscope.	tist used very thin slices of alveolar tissue with the

(c) The figure below is an image of the lung tissue observed using an optical microscope.

Identify the tube labelled A.

Α			

The scientist used a ruler to measure the diameter of some of the alveoli.

The table below shows the scientist's results.

Alveolus	diar	nete	r/n	nm				
Alveolus diameter / mm	4	2	5	1	2	3	5	2

(1)

(d) The magnification of the image in the figure above is \times 40

Use this information and the table above to calculate the mean diameter, in μm , of the alveoli.

Show your working.

Answer _____ µm

(2)

(e)) Give the uncertainty associated with taking a measurement with 1 mm graduations.	nt using a ruler
	Calculate the percentage error for a measurement using t	he ruler of 4 mm
	Uncertainty ±mmm	
	Percentage error	(2)
		(2) (Total 10 marks)

	2
u	5.

Scientists dissected gills from several species of fish. They recorded:

- the mass of the whole fish
- the total number of gill filaments
- the mean length of one filament
- the mean number of lamellae per mm
- the mean surface area of one lamella.

(a)	It was not possible for the scientists to measure the length of every filament
	and the surface area of every lamella.

Suggest how they collected data to give a reliable mean for these variables.	
	(2)

(b) From these measurements, the scientists calculated the total surface area of the gas exchange surface on the gills of each fish species.

Calculate the total surface area of the gills of a fish with the following measurements:

- total number of gill filaments = 595
- mean length of one filament = 2.86 mm
- mean number of lamellae per mm = 16
- mean surface area of one lamella = 0.66 mm²

Give your answer in mm² **and** to an appropriate number of significant figures.

Show your working.

mm²

(c) **Table 1** shows the scientists' data for two species of fish.

Table 1

Fish species	Mean fish mass / g	Mean total surface area of the gills / mm²
Opsanus tau	305	46 100
Trachurus trachurus	250	252 500

One of these fish spends most of its time not moving, waiting to catch passing prey. The other species is very active, hunting mobile prey.

Suggest which of the species in **Table 1** is the very active fish species.

Explain your answer.		
Very active fish species		
Explanation		

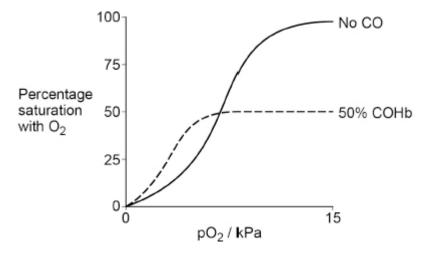
(d) Complete **Table 2** to show the phylogenetic classification for these two species.

Table 2

Taxon	Opsanus tau	Trachurus trachurus
		Animalia
	Chordata	
Class	Actinopterygii	Actinopterygii
	Batrachoidiformes	Carangiformes
Family	Batrachoididae	Carangidae
Genus		
Species	tau	trachurus

(2)

(2)


(Total 8 marks)

Q4.

(a) Carbon monoxide (CO) is released during incomplete combustion of fossil fuels.

The graph below shows the dissociation curve for oxyhaemoglobin when:

- not exposed to CO
- exposed to CO such that 50% of the oxygen binding sites are occupied by CO (50% COHb).

Using the graph above, what can you conclude about how exposure to CO affects the loading and unloading of oxygen by haemoglobin?

Explain your answer.	

(b) The World Health Organisation (WHO) suggests that to avoid long-term health effects, COHb concentrations should be kept below 2.5%.

WHO recommends that people should not be exposed to:

- air with > 10 mg m⁻³ CO for more than 8 hours
- air with > 30 mg m⁻³ CO for more than 1 hour.

Scientists have used a mathematical model to calculate the exposure to carbon monoxide that would result in 2.5% COHb in both adults and children.

The table shows the scientists' results.

Exposure duration at rest / hours	CO concentration in the air / mg m ⁻³ resulting in 2.5% COHb		
rest / nours	Child	Adult	
1	31.2	40.2	
8	9.6	10.6	

The scientists suggest that the WHO recommendations for carbon monoxide concentrations resulting in 2.5% COHb should be reduced.

Evaluate the scientists' conclusion.			

(3)

(Total 6 marks)

$\mathbf{\cap}$	
u	ວ

(a)

Evnla	in vour o	newere				
zxpia	in your a	isweis.				
)escr	ibe how	numans t	oreathe in	and out.		
Descr	ibe how	numans t	preathe in	and out.		
)escr	ibe how	numans t	oreathe in	and out.		
)escr	ibe how	numans t	oreathe in	and out.		
)escr	ibe how	numans t	oreathe in	and out.		
Descr	ibe how	numans t	oreathe in	and out.		
)escr	ibe how	numans t	preathe in	and out.		
Descr	ibe how	numans t	oreathe in	and out.		
Descr	ibe how	numans k	preathe in	and out.		
Descr	ibe how	numans k	oreathe in	and out.		
Descr	ibe how	numans k	preathe in	and out.		
Descr	ibe how	numans b	preathe in	and out.		
Descr	ibe how	numans k	preathe in	and out.		
Descr	ibe how	numans k	preathe in	and out.		
Descr	ibe how	numans k	preathe in	and out.		

Describe how the structure of the insect gas exchange system:

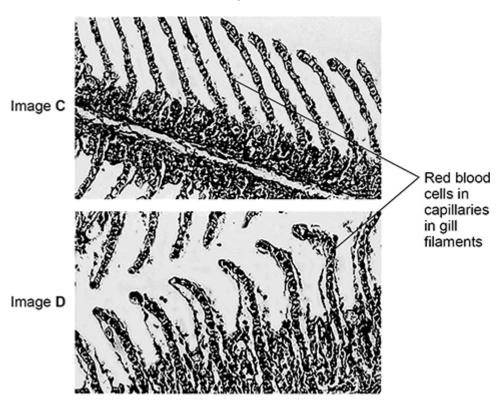

Q6.

Figure 1 shows images of gills from two fish as seen through an optical microscope.

Image C shows gills from a fish with healthy gills.

Image **D** shows gills from a fish with damaged gills.

Figure 1

Magnification × 160

(a) To observe the fish gills with the optical microscope, the scientists used **two** different stains. The first stain binds to DNA; the second stain binds to the red blood cells.

Explain why a second stain would be needed to stain the red blood cells. Suggest which molecule the stain could bind to in the red blood cells.

Explanation	·		
Molecule			

(b) Using Figure 1, the scientists calculated the surface area to volume ratios for each gill filament in these two fish. Some of their results are shown in Table 1.

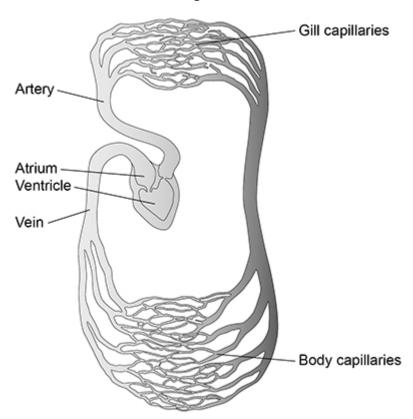
Complete **Table 1**. State your calculated volume and surface area:volume ratio to 2 significant figures.

Table 1

Fish gill	Surface area / µm²	Volume / µm³	Surface area:volume ratio
Healthy	7.4 × 10 ³	2.3 × 10 ⁴	
Damaged	1.1 × 10 ⁴		0.13:1

(2)

(c) The damage to the gills causes uncontrolled cell division in the cells around the capillaries in the gill filaments.


Other than surface area:volume ratio, describe **one** way this uncontrolled cell division changes the gills, as shown in **Figure 1**.

Explain how this difference would affect gas exchange.			
Difference _			
Explanation			

(3)

Figure 2 shows the general pattern of blood circulation in fish.

(d) Use **Figure 2** to complete **Table 2** to show **two** differences between the circulation of blood in fish and the circulation of blood in a mammal.

Table 2

Difference	Circulation of blood in fish	Circulation of blood in mammal
1		
2		

(2)

(Total 9 marks)